Showing posts with label CMRR and PSRR. Show all posts
Showing posts with label CMRR and PSRR. Show all posts

October 6, 2024

Analog Electronics Chapter 3: Exploring Key Characteristics of Operational Amplifiers (OPAMPs)

Operational amplifiers (OPAMPs) have several important characteristics that make them vital components in analog circuits. These properties directly influence how OPAMPs behave in various applications, from signal amplification to filtering and computation.

1] Open loop gain:

The open loop gain of an OPAMP is its differential gain under conditions where no feedback is provided. Ideally its value is infinite. i.e.

Av = Vo/Vid and Vid<<<Vo

With infinite open-loop gain, even the smallest difference between the input terminals would be greatly amplified, making the OPAMP highly sensitive to input signals.

2] Closed loop gain:

The overall gain of OPAMP with feedback is known as closed loop gain(Acl). OPAMP is generallt used with feedback,the gain is adjusted by feedback resistor which has a range of 10³ or 10⁵. Closed-loop gain is predictable and stable, making the OPAMP useful for a wide range of controlled amplification tasks.

3] Input impedance:

OPAMPs input impedance Zin is the impedance looking into its input terminals. As shown in below figure, it determine how much current it takes from the input voltage. Infinite input impedance ensures that no current flows into the amplifier input terminals.
Zin= Vin/Iin = infinite

4] Output Impedance:

It is the resistance looking from the output. It determines how much maximum current it gives without drop in output voltage. if Z0 = 0 ohms full amplified voltage Av * Vid appears at the output. Zero output impedance allows the OPAMP to provide maximum power to the load. This means that the output voltage remains constant, irrespective of the connected load, ensuring efficient power transfer. Ideally Zo=Vo/Io = 0

5] Infinite bandwidth:

Bandwidth is the range of frequency for which OPAMP works with maximum gain. Ideally, OPAMPs bandwidth is infinite practically it is in MHz. An infinite bandwidth means that the OPAMP can amplify signals of any frequency without attenuation. This characteristic allows the OPAMP to operate across a wide range of frequencies, making it versatile for different applications.

6] Input bias current:

Input bias current is the small amount of current that flows into the input terminals of an OPAMP to operate the internal transistors. In an ideal OPAMP, this current should be zero, meaning no current is drawn from the signal source. However, in real-world OPAMPs, a small bias current is necessary for the transistors at the input stage to function.

This bias current typically ranges from picoamperes (for FET-based OPAMPs) to nanoamperes (for bipolar OPAMPs). Although small, input bias current can cause voltage drops across resistors in the circuit, introducing errors in sensitive or high-precision applications, such as instrumentation amplifiers or integrators.

To minimize the impact of input bias current, designers often use matched resistors or compensate for it with external circuits, especially when precision and accuracy are paramount.

7] Input offset current:

Input offset current is the difference between the bias currents flowing into the two input terminals of an operational amplifier. Ideally, these bias currents should be equal, but in real-world OPAMPs, slight mismatches occur due to internal transistor imbalances.

This difference, though typically small (in the nanoampere range), can lead to inaccuracies in the output, especially in high-precision applications. It can cause an offset in the output voltage, even when the input voltage is zero. In sensitive circuits, input offset current can be reduced by using precision OPAMPs or compensating with external resistors.

8] Input Offset Voltage

Input offset voltage is the small voltage that must be applied between the inverting and non-inverting terminals to force the output to zero when it should ideally be zero. In an ideal OPAMP, this voltage is zero, meaning both inputs would perfectly match in the absence of any input signal.

In practical OPAMPs, due to imperfections in the internal components, a small offset voltage (in the millivolt or microvolt range) is required to balance the internal circuitry. This can lead to errors in precision applications, especially when amplifying small signals. High-quality OPAMPs typically have lower input offset voltages, and external trimming techniques or offset adjustment pins are often used to minimize this effect.

9] Slew Rate

Slew rate defines how quickly the output of an OPAMP can change in response to a change in the input signal. It is typically expressed in volts per microsecond (V/µs). A higher slew rate means the OPAMP can respond to rapid changes in the input signal without distortion.

10] Drift

Drift refers to the slow, unintended changes in OPAMP parameters (like input offset voltage and bias currents) over time or with changes in temperature. Low drift is crucial for applications that require long-term stability and precision.

11] CMRR:

CMRR (Common-Mode Rejection Ratio) is a measure of how well an operational amplifier (OPAMP) can reject common-mode signals, i.e., signals that appear simultaneously and in phase at both the inverting and non-inverting input terminals. Ideally, an OPAMP should amplify only the differential signal (the voltage difference between the two input terminals) and completely reject common-mode signals, like noise or interference.

Formula:
CMRR is expressed as the ratio of the differential gain A diff to the common-mode gain A cm, usually in decibels (dB):

Differential Gain Adiff : The gain of the OPAMP when amplifying the difference between the inverting and non-inverting inputs.
Common-Mode Gain Acm : The gain of the OPAMP when amplifying signals that are common to both inputs.
A higher CMRR indicates better performance in rejecting noise or unwanted signals that are common to both inputs, which is especially important in noisy environments or when dealing with small differential signals in the presence of large common-mode signals.

12] PSRR:

PSRR (Power Supply Rejection Ratio) measures how well an operational amplifier rejects variations in its power supply voltage. It quantifies the ability of the OPAMP to maintain a consistent output even when there are fluctuations or noise in the supply voltage. Ideally, variations in the power supply should have no effect on the OPAMP’s output, but in reality, some changes in output do occur due to power supply fluctuations.

Formula:
PSRR is also expressed in decibels (dB) as the ratio of the change in power supply voltage (ΔVsupply) to the resulting change in output voltage (ΔVout):

A high PSRR value indicates that the OPAMP can effectively suppress changes in the output due to variations in the power supply, making it more resilient to supply noise or instability.
PSRR is typically high at low frequencies but can degrade at higher frequencies, which means high-frequency noise from the power supply could still affect the output.

13] Frequency Response

The frequency response of an OPAMP describes how its gain varies with frequency. While OPAMPs can ideally amplify signals across all frequencies, real-world devices have a limited bandwidth where gain starts to decrease at higher frequencies. Understanding the frequency response is essential when designing circuits for high-speed or high-frequency applications. Below diagram represents the frequency response of OPAMP:
Let’s break down the key elements:

Flat Region (Low Frequencies):

At lower frequencies, the op-amp maintains a constant voltage gain (around 100 dB in this case). This is the open-loop gain of the op-amp.
-3 dB Point:

This point marks the beginning of the roll-off. It is the frequency where the gain drops by 3 dB from the maximum value. This corresponds to the op-amp’s bandwidth limit for higher precision.
Roll-off Slope (-20 dB/decade):

Beyond the -3 dB point, the gain decreases at a rate of -20 dB/decade. This means the gain drops by 20 dB for every tenfold increase in frequency. This roll-off is typical of a single-pole system, which is common for op-amps.
Unity Gain Frequency:

The point where the gain reaches 0 dB (unity gain). It indicates the highest frequency at which the op-amp can amplify without any gain (effectively acting as a buffer).

Conclusion

Understanding these key characteristics of operational amplifiers is crucial for designing effective analog circuits. From gain control and input impedance to slew rate and frequency response, these parameters shape how OPAMPs function across various applications in signal processing, control systems, and instrumentation.

October 1, 2024

Analog Electronics Chapter 1: Operational Amplifiers Explained — Basics to Applications

An amplifier is an electronic device or circuit that increases the power, voltage, or current of an input signal. Amplifiers are a crucial part of many electronic systems, enabling small input signals to be boosted for a variety of applications such as audio devices, communication systems, and instrumentation.

At its core, an amplifier takes a weak input signal and, through its design, produces a stronger output signal while maintaining the characteristics of the input, such as waveform and frequency. This increase in signal strength can be described by the term “gain,” which represents how much an amplifier increases the amplitude of the signal.

The gain of a single amplifier is often insufficient for practical use. To achieve the desired high gain, multiple amplifier stages are coupled together.

An operational amplifier (OPAMP) is a high-gaindirect current (DC) amplifier with differential inputs. It amplifies the difference between two identical but opposite input signals while rejecting common-mode signals (signals that are the same at both inputs). This makes OPAMPs very versatile, as they can amplify both DC and alternating current (AC) signals.

Additionally, OPAMPs can perform various mathematical operations, such as addition, subtraction, differentiation, integration, and even act as buffers or analog-to-digital (A/D) converters. OPAMPs typically require a dual power supply for proper functioning.

Characteristics of an ideal OPAMP:

  1. Infinite open-loop gain
  2. Infinite input impedance
  3. Zero output impedance
  4. Infinite common-mode rejection ratio (CMRR)
  5. Zero response time (instantaneous response)
  6. Zero input bias current
  7. Zero input offset current
  8. Zero input offset voltage

Basic Circuit Diagram of an OPAMP

The diagram above shows the basic circuit of an operational amplifier (OPAMP). It has two input terminals — an inverting input (labeled “-”) and a non-inverting input (labeled “+”) — and one output terminal. The inputs are differential, meaning the OPAMP amplifies the voltage difference between the two input terminals. The inverting input reverses the phase of the input signal by 180 degrees, while the non-inverting input maintains the signal’s original phase.

  1. Inverting Input (-): The signal applied to this input will be inverted at the output.
  2. Non-inverting Input (+): The signal applied to this input will appear at the output without inversion.

In addition to the inputs and the output, the OPAMP requires a power supply to operate. This is provided by the +Vcc and -Vee terminals:

  1. +Vcc: The positive supply terminal, which provides the upper voltage limit for the output signal. The output cannot exceed this voltage.
  2. -Vee: The negative supply terminal, which sets the lower voltage limit for the output signal. The output cannot drop below this voltage.

For example, if the OPAMP is powered by +15V and -15V, the output can swing between these limits. This is essential for amplifying both positive and negative signals, making the OPAMP suitable for alternating current (AC) signals as well as direct current (DC) signals.

Block Diagram of an Operational Amplifier (OPAMP)

The operational amplifier (OPAMP) consists of several internal blocks that work together to amplify the input signal. Below is the step-by-step flow and function of each block in your block diagram:

1. Differential Amplifier (First Stage):

The two input signals, inverting and non-inverting, are fed into the first differential amplifier. This stage amplifies the difference between the two inputs and rejects any signals common to both inputs (common-mode signals).
The constant current source connected to this stage provides stable biasing for the transistors in the differential pair. It ensures that the current remains constant regardless of variations in supply voltage or temperature, improving the amplifier’s linearity and performance.
This stage sets the foundation for the OPAMP’s high input impedance and good common-mode rejection ratio (CMRR).

2. Second Differential Amplifier (Intermediate Stage):

The output from the first differential amplifier is fed into a second differential amplifier, which further amplifies the differential signal while continuing to reject any residual common-mode noise.
This stage improves the gain of the OPAMP and ensures that the signal is prepared for the next stages of amplification and processing.

3. Emitter Follower (Buffer Stage):

After the second differential amplifier, the signal is passed to an emitter follower (or buffer) stage. This stage has a high input impedance and low output impedance, making it ideal for impedance matching.
The emitter follower ensures that the signal can be transferred efficiently to the next stages without loading the previous stage, maintaining signal integrity.

4. DC Level Shifter:

The DC level shifter is used to adjust the DC bias of the signal. Since the differential amplifier stages might introduce a DC offset, the level shifter corrects this by shifting the signal back to the desired reference level.
This block ensures that the output stage operates correctly, especially in circuits where precise voltage levels are critical.

5. Output Stage:

The output stage is typically a high-power amplifier stage that provides the necessary current to drive the load connected to the OPAMP’s output.
This stage is designed to handle large signal swings and provide enough current to low-impedance loads, ensuring that the OPAMP can drive a variety of external circuits.

6. Output Load:

The final block is the output load, which represents the external circuit or device that the OPAMP is driving. This could be anything from another amplifier stage to a speaker or other analog component.
Each stage in the OPAMP works together to provide high gain, low output impedance, and excellent signal fidelity, ensuring the amplified signal is clean and stable across a wide range of applications.

Conclusion and What’s Next

In this blog, we’ve explored the fundamental aspects of operational amplifiers (OPAMPs), from their basic functionality and characteristics to the internal block diagram and circuit structure. Understanding these components is crucial for grasping the power and versatility of OPAMPs in electronic systems.

In the next blog, we’ll dive deeper into specific OPAMP configurations such as inverting and non-inverting amplifiers, where we’ll explain how these modes work. Additionally, we’ll explore important OPAMP parameters such as:

  1. Common-Mode Rejection Ratio (CMRR): The ability of an OPAMP to reject input signals common to both input terminals.
  2. Power Supply Rejection Ratio (PSRR): The OPAMP’s ability to maintain performance despite variations in the power supply.
  3. Slew Rate: The rate at which an OPAMP’s output can change in response to a rapid input signal.

We’ll also look at how OPAMPs perform different operations, such as:

  1. Addition and Subtraction
  2. Differentiation and Integration
  3. Buffering
  4. Analog-to-Digital Conversion (A/D)

Stay tuned to understand how these operations and configurations make OPAMPs an indispensable tool in modern electronics!

Explore Our Topics!

Check out the extensive list of topics we discuss:  Communication Protocols: -  USB   - RS232   -  Ethernet   -  AMBA Protocol: APB, AHB and...